Electric Energy: the Potential Showstopper for a Hydrogen Fuel-Cell Fleet

- Paul Kruger
- Stanford University
- Stanford, CA 94305

Topics

- The Human Quest for Abundant Energy
- Competing Uses for Electric Energy
- Electric Energy for Hydrogen Production
- Future Resources for Sustainable Fuel
- Potential Solutions for Sufficient Energy

The Human Quest for Abundant Energy

A Philosophical Introduction

Axiom 1

- Humans have for comfort, ease, and profit historically progressed in energy sources
- from humans (self, family, slaves, employees)
- to animals (camels, oxen, horses)
- to machines (water, steam, electricity, radiation)
- at continuously increasing consumption of energy per unit of useful work.
- Therefore, at any given growth rate of human population, total energy consumption will grow at a greater rate.

The World at Six Billion United Nations Population Division

Axiom 2

- Fundamental human goals include the desire for
- 1. "Pleasant Habitat"
- a clean and safe environment
- 2. "comfort and Ease"
- abundant energy on demand

The Quest for Clean Fuel

Axiom 3

• The history (and future) of Humanity follows a One Way and Irreversible Path

Specific Energy of Fuel

Are We Losing Our Way in This Quest?

- Will energy consumption continue to grow at a greater rate than population?
- Will the goals of a clean and safe environment and abundant energy on demand be abandoned?
- Will human history continue in an irreversible path?

The Technology Question

 As population continues to grow, should we try to reverse the quest for greater specific energy technology?

The Social Question

- As population continues to grow,
 - Do We Regress (Do Without)?
 - or
 - Do We Advance(Do Better)?

Future Electricity Demand

Business-as-Usual Growth

$$\Delta ED = \int_{\text{now}}^{\text{later}} (B.a.U.) e^{g \cdot dt} - \int_{\text{now}}^{\text{later}} \text{Conservation } e^{c \cdot dt}$$

Plus Large Incremental Additions
New Transportation Fuel: Hydrogen
Electronic Way of Life
Crosscontinental Superconducting Grid

The Electronic Way of Life

- Future exponential growth of electric energy demand for
- Computers
- Mobile cell phones
- Home management
- Information technology
- Aviation security
- Homeland defense

Continental Superconducting Grid

Courtesy: Chauncey Starr, EPRI

Concept

- Coast-to coast transmission corridor
- 'low-cost' MgBr₂ superconductor cooled by LH₂
- Power plants along corridor produce electricity and LH₂
- Local branches deliver both electricity and GH₂

Advantages

- Supplements regional electric power grids
- Provides load diversity across 4 time zones
- Renewable + nuclear energy = sustainable power
- "spent" coolant hydrogen available locally as hydrogen fuel

Supergrid Section

MgBr₂ DC Superconductor Line

Electric Energy Requirement for Large-Scale Production of Hydrogen Fuel

HFleet Scenario Model

HFleet Scenario Model

- Extrapolation of historic population, vehicle transportation, and electricity data in a dynamic model in two time stages:
- 2000-2010, when a fuel-cell vehicle industry is likely to expand rapidly
- 2010-2050, when a large fraction of the fleet could operate with hydrogen fuel

Details of Methodology and Data

- Air Quality Aspects
- 11th World Hydrogen Energy Conf., I.A.H.E., Stuttgart, Germany, 1966
- Potential Air Quality Improvement, Tokyo (WE-NET)
- 12th World Hydrogen Energy Conf., I.A.H.E., Buenos Aires, Argentina, 1998
- Electric Power Study for California
- International J. Hydrogen Energy, Vol. 25, May 2000
- Electric Power Study for the United States
- International J. Hydrogen Energy, Vol. 25, Nov 2000
- Electric Power Study for the World Vehicle Fleet
- International J. Hydrogen Energy, Vol. 26, Nov 2001

Results: B.a.U. 1990-2010

	Calif.	<u>U.S.</u>	World
Population (10 ⁶)			
1990	29.8	251	5290
2000	34.9	276	6060
m.a.g.r.(%/a)	1.60	0.96	1.36
2010	40.9	304	6940
Vehicle Fleet			
1990	25.5	184	566
2000	29.9	229	715
m.a.g.r.(%/a)	1.60	2.19	2.33
2010	35.1	243	902
Affluence (?) (VpC)			
1990	0.857	0.78	0.11
2010	0.863	0.80	0.13
Electricity Demand (PWh)			
1990	0.229	2.97	11.7
2000	0.266	3.80	15.1
m.a.g.r.(%/a)	1.49	2.48	2.50
2010	0.309	4.85	19.3

California Vehicle Fleet

CA HFuel Electric Energy Req.

Ford Motor Co. Production 1903-1923

U.S. HFuel Requirement

U.S. HFuel Electric Energy Req.

World Vehicle Fleet

World HFuel Requirement

World HFuel Electric Energy Req.

Results: 2010-2050 Scenarios

	Calif.	<u>U.S.</u>	World
Population (10 ⁶)			
2010	40.9	304	6940
2050	~ 75	~ 450	~ 9000
Vehicle Fleet (10 ⁶)			
2010	35.1	243	902
2050	63.7	458	2200
HFleet (10 ⁶)(@40%/a)			
2010	0.00	0.00	0.00
2050	61.2	437	1950
HFuel (10 ⁹ kg)		*	
2010	0.00	0.00	0.00
2050	1.25	99	477
Electricity (PWh)			
2010	0.31	4.85	19.3
2050 (B.a.U)	0.54	8.16	51.1
2050 (w/HFuel)	1.08	11.6	69.8

Natural Gas for Transportation

NG vs. H₂ as an Automotive Fuel Spec.En. Vol.En.

	(KVVn/kg) (I	KVVn/Nm ⁻
Compressed (CNG)	13.9	3.38
Liquid (LNG)	13.9	5.8
Compressed (CH ₂)	33.3	0.64
Liquid (LH ₂)	33.3	2.36

Natural Gas to Produce Hydrogen Fuel Commercial Process

Reforming: $CH_4 + H_2O \rightarrow 3H_2 + CO$ 'Shift': $CO + H_2O \rightarrow H_2 + CO_2$ Overall: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$ Molar Mass: $16 \text{ kg } CH_4 \rightarrow 8 \text{ kg } H_2$

Combustion Energy

	<u>CH</u> ₄	H_2
Specific En.(kWh/kg)	13.9	33.3
Molar Heat (kWh)	222	266

Competing Uses for Natural Gas

- Petrochemical for chemical synthesis
- Combustible fuel for residential and industrial heating/cooling
- Combustible fuel for electric power generation
- Reformer feed for hydrogen production

Long-Term Sustainability for Natural Gas in the U.S.

Demand for Natural Gas to 2050 (Tcuft)

			magr	
i s ⁷ ee	2000*	2020*	(%/a)	2050**
Comm./Ind.(a)	13.6	17.4	(1.2)	25.1
Residential	5.0	6.0	(0.9)	7.9
Transportation (CNG)	0.02	0.14	(9.8)	2.6
Utility Electric Power	4.2	10.3	(4.5)	40.0
Hydrogen Production(b)	0.0	0.03	(2.2)	<u>19.5</u>
Total Demand	22.8	33.8	(3.4)	95.1
Forecast Supply*	22.7	34.1	(2.1)	64.4

^{*} adapted from DOE/EIA (AEO-2002)

^{**} extrapolated at constant m.a.g.r.

⁽a) includes use as petrochemical feedstock

⁽b) all by steam reforming; none by electrolysis

Potential Distribution of Energy Resources for HFuel Production in the U.S.

	Forecast D		Forecast Renewables	Fossil Fuels	On-Line Nuclear
<u>Year</u>	(PWh)	(PWh)	(PWh) (%)		(PWh) (%)
1999	3.39		0.35 (10%)	2.31 (68%)	0.73 (22%)
2010	4.22	4.68	0.39 (9%)	3.11 (74%)	0.72 (17%)
2020	4.87	5.59	0.40 (8%)	3.90 (80%)	0.57 (12%)
m.a.g.r. (%/a)	+1.7	+1.8	+0.5	+2.5	- 1.1
2050**	n/a	13.4	5.36 (40%)	Χ	0.41 (3%) +Y

Shortfall could be alleviated within the range

X (%)	+	Y	(%)	(No.NPP)
8.0 (57)		0	(0)	0
4.0 (30)		4.0	(27)	400
0 (0)		8.0	(57)	800

 ^{*} adapted from Table A8,p.139, "Annual Energy Outlook 2001 with Projections to 2020", DOE/EIA-0383(01), December 2000

^{**} for study, total energy required = 9.5 (w/o H₂ production) + 3.9 (w/ H₂)

Potential Distribution of Energy Resources for World HFuel Production

	Forecas	t Demand	For	ecast	Foss	il	On-Li	ine
	EIA	IAEA	Rene	wables	Fuel	s	Nucle	ear
<u>Year</u>	(PWh)	(PWh)	(PWh)	(%)	(PWh)	(%)	(PWh)	(%)
1997	12.3	14.9(99)	2.61	(21.3)	7.37	(60.0)	2.28	(18.6)
2010	16.8	18.3	3.57	(21.2)	10.79	(64.1)	2.46	(14.6)
2020	21.6	22.3	4.31	(21.0)	15.13	(70.1)	2.14	(9.9)
m.a.g	.r.							
(%/a)	2.46	1.91	2.18		3.13		-1.39	
2050	5 1	.1	20.5	(40.0)	Χ-		1.41 (2	.8) + Y

Potential Distribution of Additional Energy Shortfall

X	(%)	+	_Y	(%)	No.NPP
29.2	(56.8)		0	(0)	0
19.6	(28.4)		19.6	(28.4)	1960
0	(0)		29.2	(56.8)	2920

Dual-Purpose Electric Power Plant

Solar-Nuclear-Hydrogen Energy Parks

- Concept:
- Large-area industrial park in remote solar area with
- central cluster of nuclear power plants surrounded by
- field of photovoltaic cells and wind power mills
- Synergistic Coupling
- Reduced problems of alternate energy sources
- Nuclear: unpopularity of high-specific energy
- Solar: technical problems of low-specific energy
- Increased efficiency for electricity/hydrogen production
- Dual-purpose power plants
- Preheating for higher-temperature electrolysis